

## Linear Mode Photon Counting HgCdTe Avalanche Photodiode Arrays for Multi-beam Laser Altimeters

PI: Xiaoli Sun/NASA Goddard Space Flight Center

<u>Target:</u> Surface and atmosphere of Mars and Titan; Surfaces and shapes of airless bodies; Remote sensing from orbit or during flyby

## Science:

- Mars polar topography map at 30 m spatial resolution and wall-to-wall ground coverage to capture detailed geological features and monitor seasonal variation.
- Atmosphere backscatter profiles of clouds, dusts, and aerosols, daytime and nighttime.
- Diurnal cycle of surface frost in polar region of Mars and volatiles on airless bodies

## Objectives:

- Developing a quantum limited (single photon) and linear response laser altimeter receivers from visible to mid infrared wavelengths
- Mapping surface topography at finer resolution and wider coverage from current 5-10 sparsely distributed beams to 60 contiguous pixel swath at better than 0.5 m ranging precision.
- Simultaneous measurements of atmosphere backscatter profiles and surface reflectance at the laser wavelength daytime and nighttime.

Cols: Erwan Mazarico/Code 698/NASA GSFC
Anthony Yu/Code 544/NASA GSFC
Jeff Beck/Leonardo DRS, Dallas TX



## Key Milestones:

|   | <u> </u>                            |    |        |
|---|-------------------------------------|----|--------|
| • | Science measurement requirements    | 3  | months |
| • | DRS in contract with GSFC           | 6  | months |
| • | Swath mapping signal simulation     | 12 | months |
| • | DRS detector design finalization    | 18 | months |
| • | Laser transmitter design            | 20 | months |
| • | DRS detector delivery               | 30 | months |
| • | Detector evaluation at GSFC         | 34 | months |
| • | Signal processing algorithm testing | 35 | months |
| • | Final report                        | 36 | months |

TRL 2 to 4